• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
bone and spine logo

Bone and Spine

Your Trusted Resource for Orthopedic Health Information

  • Home
  • About
  • Contact Us
  • Policies
  • Show Search
Hide Search
You are here: Home / Fractures and Dislocations / Scaphoid Fractures – Classification, Presentation and Treatment

Scaphoid Fractures – Classification, Presentation and Treatment

Dr Arun Pal Singh ·

Last Updated on March 17, 2025

The scaphoid is the most frequently fractured carpal bone. Scaphoid fractures account for up to 15% of acute wrist injuries and 50% to 80% of carpal fractures. Scaphoid fractures have been reported in people aged 10-70 years but commonly occur in young, active individuals,  peak incidence being in the second and third decades of life.

Scaphoid fractures are most common following a fall, athletic injury, or motor vehicle accident.

They have a high incidence of nonunion, frequent malunion, wrist instability, and posttraumatic arthritis.

Scaphoid injuries are more common in men than in women.

Most of the scaphoid fractures occur at the waist [see classification] – 65%, proximal third – 25%, and distal third – 10%.

Contents hide
1 What Are Occult Scaphoid Fractures?
2 Anatomy of Scaphoid
3 Mechanism of Injury
4 Classification of Scaphoid Fractures
4.1 According to Anatomic Location
4.2 According to the plane of Fracture
4.3 According to Stability
4.4 Herbert and Fisher classification
5 Clinical Presentation
6 Differential Diagnoses
7 Imaging
7.1 Nuclear Imaging
7.2 MRI
7.3 CT
8 Treatment of Scaphoid Fractures
8.1 Nonoperative Treatment
8.2 Operative Treatment
9 Complications of Scaphoid Fractures
9.1 Scaphoid Nonunion
9.2 Scapholunate Dissociation and SNAC wrist (Scaphoid nonunion advanced collapse)
9.3 Osteonecrosis of the Scaphoid
9.4 Late VISI of Carpus
9.5 Wrist Stiffness
9.6 Wrist Arthrosis
10 Prognosis of Scaphoid Fractures
11 References

What Are Occult Scaphoid Fractures?

Occult fractures of the scaphoid are the fractures that are suspected clinically but do not show up in the x-rays. Up to 30% of all scaphoid fractures may not be detected on initial x-rays.

If an occult fracture of the scaphoid or severe concomitant wrist injury is suspected but not visible on initial x-rays, the wrist should be immobilized for 10 days in a forearm cast or splint, and the patient should be re-evaluated clinically as well radiologically.

MRI and radionuclide and MRI scans are reliable methods of diagnosing occult fractures of the scaphoid but are expensive investigations.

Anatomy of Scaphoid

The wrist contains eight small bones, which are arranged in two rows, proximal and distal.

The proximal bones, from the radial to the medial side, are the scaphoid, lunate, triquetrum, and pisiform.

The distal bones are, in similar fashion are the trapezium, trapezoid, capitate, and hamate.

Out of proximal four bones, only the scaphoid and lunate articulate with the radius and are responsible for transmission of the entire force of a fall on the hand to the forearm.

Anatomic snuffbox is often used to mark tenderness of the scaphoid injury. It is bordered by the extensor pollicis longus tendon medially, the extensor pollicis brevis and abductor pollicis longus tendons laterally, and the styloid process of the radius proximally.

The scaphoid is Greek for boat and the bone resembles a bent and twisted boat.

The plane of the scaphoid is 450 of palmar tilt to the longitudinal axis of the forearm and 450 radial angulation from the central axis of the forearm on the PA projection.

Major blood supply of scaphoid is a dorsal carpal branch, a branch of the radial artery which enters scaphoid in a nonarticular ridge on the dorsal surface. It supplies proximal 80% of scaphoid via retrograde blood flow.

Minor blood supply from the superficial palmar arch, a branch of the volar radial artery which enters the distal tubercle and supplies distal 20% of the scaphoid.

75% of scaphoid bone is covered by articular cartilage.

The entire proximal half of the scaphoid is an articular surface within the radiocarpal joint. Therefore, the blood supply can enter only on the distal palmar segment and dorsal ridge.

For this reason, proximal-pole fractures require the longest time to union and are associated with a high incidence of osteonecrosis. Approximately one-third of patients have no perforating vessels proximal to the scaphoid waist.

Intrinsic ligaments that attach scaphoid to lunate and distally to the trapezium and trapezoid stabilize the scaphoid.

These ligaments restrict the motion permitting a degree of rotation proximally and a degree of gliding distally.

The scaphoid acts as a link across the midcarpal joint, connecting the proximal and distal carpal rows.

The scaphoid is the key to the carpus because it allows both tremendous mobility of the wrist in flexion/extension and radial/ulnar deviation and provides stability as the intercalated segment linking the proximal and the distal carpal rows.

Both intrinsic and extrinsic ligaments attach and surround the scaphoid allowing the scaphoid to flex with wrist flexion and radial deviation and extend during wrist extension and ulnar deviation.

Much of the wrist motion is a result of the rotation of the scaphoid and the rest of the proximal row during radial and ulnar deviation. The scaphoid rotates to become more vertical, or collinear with the radius, with ulnar deviation bringing the lunate and triquetrum into the dorsal rotation (ie, the distal surface of the bone rotates dorsally).

With radial deviation, the scaphoid rotates to become more horizontal, or perpendicular to the long axis of the radius.

Mechanism of Injury

Read biomechanics of wrist

The scaphoid serves to coordinate and smooth the motions of the proximal and distal rows.

Any shear strain that occurs across the midcarpal joint is transferred through the scaphoid, and may cause fractures and dislocations.

The usual mechanism of injury is a fall onto the outstretched hand (FOOSH) that results in forceful hyperextension of the wrist and impaction of the scaphoid against the dorsal rim of the radius. On getting dorsiflexed >95 degrees, the proximal pole of the scaphoid is tightly held between the capitate, the dorsal lip of the radius, and the taut palmar capsule resulting in fracture of waist. Waist fractures are the type most commonly associated with transscaphoid perilunate fracture-dislocations

Another mechanism is compression injury caused by a longitudinal load or impaction of the wrist. It often leads to fracture of the scaphoid without displacement. When the hand is outstretched and the wrist is in ulnar deviation, the scaphoid is vertical aligned. The axial load combined with the normal palmar curvature of the scaphoid results in a bending moment that collapses the scaphoid. The fracture can involve the scaphoid waist, proximal pole, or the tubercle.

Fractures of the tubercle can be caused by either compression or avulsion.

Proximal pole fractures can be caused by an avulsion of the scapholunate ligament.

In many wrist sprain injuries, the dorsal rim of the radius and the waist of the scaphoid about, resulting in a contusion of the scaphoid and tenderness in the snuffbox.

Snuffbox tenderness is so common in scaphoid injury and considered to be clinical sign suggestive of scaphoid fracture even if the x-rays do not show fracture as the fracture line may be more visible after some resorption [another x-ray at 7-14 days]

Scaphoid fractures in children and the elderly are uncommon. In children, the force causes distal radial physis to fail first and in the elderly, the distal radial metaphysis usually fractures before the scaphoid.

Concomitant distal radius fracture also may occur, particularly radial styloid fractures and dorsal rim fractures, because the line of injury produces a shear fracture of the radius rather than a disruption of the radiocarpal ligaments..

An unstable scaphoid fracture results in a dissociation of the proximal and distal carpal rows and tendency to collapse.

In high energy injuries, other musculoskeletal system parts should be assessed.

Median nerve injuries can occur and can be addressed at the time of surgical treatment. If carpal tunnel develops late, it should be addressed urgently.

Classification of Scaphoid Fractures

Scaphoid fractures have been classified according to various criteria.

Classification of scaphoid fractures
Classification of scaphoid fractures, two classifications are given, Image Credit: Startradiology

According to Anatomic Location

  • Tubercle fractures
  • Distal-pole fractures
  • Waist Fractures
  • Proximal-pole fractures

According to the plane of Fracture

  • Horizontal oblique
  • Transverse,
  • Vertical oblique

According to Stability

Stable Fractures

Incomplete fractures or fractures with the incompletely disrupted articular surface (intact overlying cartilage). Neither displacement nor motion about the fracture occurs with wrist motion. Stable fractures are not associated with ligamentous injury. They are treated with immobilization alone.

Unstable fractures

These are complete fractures with motion about the fracture site.

Findings that indicate instability are

  • Cortical offset greater than 1 mm
  • Fracture angulation
  • Associated ligamentous injury
  • Motion with ulnar or radial deviation.

There could be associated ligamentous injury, most frequently involving the scapholunate ligament. It is indicated by widened  scapholunate interval may widen, or a DISI pattern

Unstable fractures require fixation.

Herbert and Fisher classification

It is a comprehensive classification and serves as a guide to the treatment of scaphoid fractures. It classifies fractures according to the time of injury and subsequent healing

Type A: Stable Acute Fractures

These are incomplete fractures which unite rapidly with minimal treatment

Type A1

Fracture of tuberosity

Type A2

Incomplete fracture through waist

Type B: Unstable Acute Fractures

These fractures are likely to displace in plaster. Delayed union is common and internal fixation is the treatment of choice

Type B1

Distal oblique fracture

Type B2

Complete fracture of waist

Type B3

Proximal pole fracture

Type B4

Transscaphoid-perilunate fracture dislocation of the carpus

Type B5

Comminuted fractures

Type C

Delayed union- There is a widening of the fracture line, the formation of cysts adjacent to the fracture and proximal fragment becomes relatively dense.

Type D

Established nonunion

The fibrous union can occur after conservative treatment. It is a stable non-union with minimal deformity and variable cystic change. It may progress to pseudarthrosis in time which is hallmarked by unstable progressive deformity and leads to the development of osteoarthritis.

 Type D1

Fibrous union

Type D2

Pseudarthrosis

Clinical Presentation

After an acute injury, the patient generally presents with pain and swelling in the wrist. Often there would be a history of falling on the outstretched hand

On examination, there would be tenderness in the snuffbox. For distal pole fractures, a reliable correlation exists with pain provoked by deep palpation at the volar tubercle of the scaphoid, which is the first bony prominence distal to the volar distal radius. For waist fractures, focal tenderness is most often found in the anatomic snuffbox.

For proximal pole fractures, tenderness is often found just distal to the Lister tubercle

An associated swelling may occasionally be noticed. There is a decrease in range of motion and extremes of motion may elicit pain.

It is not uncommon for a fractured scaphoid to go unnoticed. The range of motion may be decreased. Swelling around the radial and posterior aspects of the wrist is common. If

Differential Diagnoses

  • Distal Radial Fracture
  • De Quervain Tenosynovitis
  • Wrist Dislocation
  • Ligamentous injury

Imaging

The diagnosis of scaphoid fracture is usually made by x-ray. Following x-rays are done in case of suspected scaphoid fracture for radiological diagnosis.

  • Posteroanterior view with the hand in a fist [This puts scaphoid in extension]
  • Lateral view
  • Radial oblique  view
  • Ulnar oblique view

Scaphoid View

The patient with a scaphoid fracture often holds the wrist in radial deviation, thereby shortening the scaphoid and limiting its evaluation.

To elongate, the scaphoid view is often obtained by positioning the wrist in ulnar deviation and angling the tube cranially by 20-40.

If required comparative views of the opposite uninjured wrist can be done.

In spite of this, undisplaced scaphoid fractures may not be visible on the initial set of x-rays.

Sometimes the presentation is delayed and depending upon the period since the injury, late presentation of a fracture or an established nonunion may show resorption at the fracture site, subchondral sclerosis, and displacement may occur.

Fractures of the distal radius, perilunate dislocation may occur be associated.

There is almost always a ligament damage that accompanies this injury.

Scaphoid Series Xrays

Scaphoid series is a series of x-rays which can be filmed when there is a clinical evidence of scaphoid fracture but the lesion is not visible on routine projections.

Scaphoid series is helpful for better visualization of the scaphoid and other carpal and improves exposure of the intercarpal joint spaces.

Scaphoid series consists of a sequence of the following four radiographs-

  • Wrist hyperextended and in ulnar deviation with the fist clenched and the thumb extended.
  • 15° supination view.
  • 15° pronation view.
  • Lateral view in a neutral position

For negative x-rays in case of suspected scaphoid fracture.

A scaphoid cast is applied x-rays are repeated after 10-14 days. For earlier confirmation MRI, CT, or bone scan may be done.

In case of an athlete who wants to return to competition without waiting 7-14 days for repeated radiographs, a bone scan may be obtained after 72 hours. 

 Bone scanning – Sensitivity 99%, specificity of 86%

  • MRI sensitivity 88% and a specificity of 100%,
  • Bone scanning sensitivity 72% and a specificity of 99%

Fracture of scaphoid

Fracture is typically visible as a lucent line with at least 1 disrupted cortex. In overriding fragments, a stress fracture, or fracture healing a radiopaque line may be seen.

Angulation of the scaphoid or separate fracture fragments may be observed

Small avulsions and incomplete horizontal-oblique or distal-pole fractures are more difficult to detect

Angulation of the scaphoid at the fracture is often called the humpback deformity and is associated with a greater likelihood of nonunion, worse clinical outcome, and arthritis.

Determination of the intrascaphoid angle on a tomographic image may reveal angulation.

A comparative view of the opposite wrist may aid in confirmation or rule out a finding.

Nuclear Imaging

Radionuclide bone scanning is typically performed 3-7 days after the initial injury if the radiographic findings are normal. Intense, focal tracer accumulation is considered a positive finding.

Bone contusions, degenerative disease, intraosseous ganglion, or active process cause increased activity within the scaphoid.

MRI

MRI is is noninvasive and readily available, and it can assess bone healing and evaluate bone contusions and ligamentous injuries. 

CT

Its sensitivity and specificity are estimated to be 100% when used 5-10 days postinjury. It is better in delineating the injury and identified small avulsions too. Intrascaphoid angle can be easily calculated.CT scan is helpful for evaluation of union

Treatment of Scaphoid Fractures

When displacement occurs about the scaphoid fracture, ligamentous injury and instability should be suspected.

The most common carpal instability pattern is scapholunate dissociation. It is frequently the first radiographic sign to suggest instability.

Recognition of carpal instability is important and helpful in treatment planning.

Nonoperative Treatment

Thumb spica cast immobilization

This is done in the stable nondisplaced fracture. This would constitute the majority of scaphoid fractures. if the patient has normal xrays but there is a high level of suspicion can immobilize in thumb spica and reevaluate in 12 to 14 days.

Beoth long arm spica and  short arm casting is advised by different authors and there is no consensus yet.

Duration of casting depends on the location of the fracture

  • Distal-waist for 3 months
  • Mid-waist for 4 months
  • Proximal third for 5 months

Athletes should not return to play until imaging shows a healed fracture

Augmentation with the pulsed electromagnetic field has been found to be beneficial in a delayed union.

With conservative treatment, scaphoid fractures with <1mm displacement have a union rate of 90%.

Operative Treatment

This involves the reduction and fixation of the fracture. This could be an open reduction and internal fixation or closed reduction and percutaneous screw fixation.

This treatment is indicated in unstable fractures as seen by

  • Proximal pole fractures
  • Displacement > 1 mm
  • 15° scaphoid humpback deformity/ intrascaphoid angle of > 35°
  • Radiolunate angle > 15° (DISI)
  • Associated with scapholunate ligament disruption/ carpal instability/perilunate dislocation
  • Comminuted fractures
  • Unstable vertical or oblique fractures

Other factors for consideration of surgical treatment are

  • Early return is desired in cases of nondisplaced fracture
  • Delayed presentation of acute fracture
  • Carpal instability (lunate tilt on radiograph)
  • Evidence of nonunion or osteonecrosis

The fractures are fixed by smooth Kirschner wires or a Herbert screw.  Dorsal approach is used in proximal pole fractures and volar approach is indicated in the waist and distal pole fractures and fractures with humpback flexion deformities. Arthroscopic assistance may be used in fixation.

Union rates of 90-95% have been reported with operative treatment of scaphoid fractures.

Complications of Scaphoid Fractures

Scaphoid Nonunion

Nonunion of scaphoid fracture occurs because of delayed diagnosis, gross displacement, associated injuries of the carpus, and impaired blood supply etc.

About 40% of non-unions are undiagnosed at the time of original injury.

Nonunion is 20% more common in smokers.

Timely recognized non-unions, without degenerative changes, can be treated by fixation and grafting.

Untreated scaphoid nonunion could lead to scaphoid nonunion advanced collapse of the wrist which, with time would lead to wrist arthritis.

In patients where the fracture has not shown any union even after 12 weeks of immobilization, the option of surgery should be discussed with the patient. If the patient wants a further trial of non-operative treatment, another cast can be applied for 4 weeks.

A fracture not uniting after 16 weeks should be considered for surgery.

The surgery consists of opening the fracture, removal of fibrous tissue, fixation with a compression screw and bone grafting.

Scaphoid nonunion can be of two types stable (Herbert Type D1) and unstable non union (Herbert Type D2) of scaphoid.

Stable nonunion of the scaphoid is characterized by a firm fibrous nonunion that prevents deformity from occurring

Xray of these cases would show a fracture line with variable cystic changes affecting the bone fragments. The patient in this kind of nonunion have minimal symptoms.

The patient with stable scaphoid nonunion should be encouraged to get treated in spite being symptom-free as fixation of stable nonunions give better results than unstable nonunions. [ And there is a risk of becoming a stable union an unstable union with additional trauma.]

An early treatment further reduces the incidence of secondary osteoarthritis. Percutaneous screw fixation provides good results.

Unstable Scaphoid Nonunion (Herbert Type D2) has sclerosis of bone surfaces, synovial erosion, fibrous cysts indicate an  unstable nonunion.

Unstable scaphoid nonunion leads to decrease in fragment size, collapse and deformity.

Time between the initial fracture and treatment of the nonunion and the presence of osteonecrosis are important determinants of prognosis.

MRI can be used preoperatively for assessing presence of osteonecrosis.

Treatment of Scaphoid nonunion

Inlay (Russe) bone graft

The procedure is done in the following cases-

  • Minimal deformity – No humpback scaphoid
  • No adjacent carpal collapse

Interposition (Fisk) bone graft

  • An opening wedge graft that is designed to restore scaphoid length and angulation
  • adjacent carpal collapse
  • excessive flexion deformity (humpback scaphoid)

Vascular bone graft

  • From radius or medial femoral condyle
  • Good option for proximal pole fractures with confirmed osteonecrosis by MRI
  • Absence of pancarpal arthritis and collapse

Scapholunate Dissociation and SNAC wrist (Scaphoid nonunion advanced collapse)

Scaphoid fracture non-union leads to wrist instability, collapse, and degenerative changes.

Nonunions of the scaphoid are treated in one of the following ways:

  • Radial styloidectomy
  • Excision of the proximal fragment
  • Proximal row carpectomy
  • Total or partial arthrodesis of the wrist

Osteonecrosis of the Scaphoid

  • The incidence – 30-40%,
  • Most frequently occurs in fractures of the proximal third.
  • Poor reduction, delayed surgery, and inadequate fixation of the scaphoid can increase the incident of osteonecrosis.
  • Revision surgery with vascularized bone grafts may be necessary..

Late VISI of Carpus

Read more on VISI deformity

the best way to prevent VISI deformity is to adequately repair the lunotriquetral interosseous ligament.

Late case of the VISI deformities can be treated with a dorsal capsulodesis involving the lunate and triquetrum or an ulnar four-bone arthrodesis.

Wrist Stiffness

Nearly all patients with transscaphoid perilunate fracture-dislocations will experience some decrease in wrist motion. Stable fixation in these injuries allows for early range-of-motion exercise, which may reduce the loss of motion. Static progressive splints can help certain patients regain motion postoperatively.

Wrist Arthrosis

In a number of cases, articular damage to the scaphoid or radius has been shown to be the inciting event for wrist degeneration. Osteonecrosis, poor reduction, and inadequate stabilization of the scaphoid can result in wrist arthrosis. In this cases, salvage procedures such as proximal row carpectomy or partial wrist arthrodesis can relieve pain and still allow some motion. In severe cases, a total wrist arthrodesis may be required.

Prognosis of Scaphoid Fractures

Proximal pole fractures have the poorest prognosis because the blood supply to the proximal pole is disrupted by the fracture.

Proximal 5th AVN rate of 100% and proximal 3rd AVN rate of 33%.

Transverse fracture patterns are considered more stable than vertical or oblique oriented fractures

The site of the fracture in scaphoid has been related to union rate. The reported rate of fractures in  scaphoid is

  • Waist fractures –  80%
  • Proximal pole     –  15%
  • Tuberosity       –   4%
  • Distal articular fractures – 1%

The scaphoid staple fixation is associated with the union in about 95% of patients.

Surgery is increasingly used for patients who will not tolerate prolonged casting.

References

  • Carpenter CR, Pines JM, Schuur JD, Muir M, Calfee RP, Raja AS. Adult scaphoid fracture. Acad Emerg Med. 2014 Feb. 21 (2):101-21
  • Karantanas A, Dailiana Z, Malizos K. The role of MR imaging in scaphoid disorders. Eur Radiol. 2007 Nov. 17(11):2860-71.
  • Capo JT, Shamian B, Rizzo M. Percutaneous screw fixation without bone grafting of scaphoid non-union. Isr Med Assoc J. 2012 Dec. 14(12):729-32.
  • Huckstadt T, Klitscher D, Weltzien A, et al. Pediatric fractures of the carpal scaphoid: a retrospective clinical and radiological study. J Pediatr Orthop. 2007 Jun. 27(4):447-50.
  • Pao VS, Chang J. Scaphoid nonunion: diagnosis and treatment. Plast Reconstr Surg. 2003 Nov. 112(6):1666-76; quiz 1677; discussion 1678-9.

Fractures and Dislocations This article has been medically reviewed by Dr. Arun Pal Singh, MBBS, MS (Orthopedics)

About Dr Arun Pal Singh

Dr. Arun Pal Singh is a practicing orthopedic surgeon with over 20 years of clinical experience in orthopedic surgery, specializing in trauma care, fracture management, and spine disorders.

BoneAndSpine.com is dedicated to providing structured, detailed, and clinically grounded orthopedic knowledge for medical students, healthcare professionals, patients and serious learners.
All the content is well researched, written by medical expert and regularly updated.

Read more....

Primary Sidebar

Know Your Author

Dr. Arun Pal Singh is an orthopedic surgeon with over 20 years of experience in trauma and spine care. He founded Bone & Spine to simplify medical knowledge for patients and professionals alike. Read More…

Explore Articles

Anatomy Anatomy Fractures Fractures Diseases Diseases Spine Disorders Spine Disorders Patient Guides Patient Guides Procedures Procedures
featured image for orthopedics traction

Orthopedic Traction – Principles, Types, and Uses

Traction is a fundamental concept in orthopedics for managing …

featured image of gower sign for segmenatal instability of lumbar spine

Clinical Tests for Lumbar Segmental Instability

Lumbar segmental instability may not always be visible on standard …

mesurement of scoliosis for braces

Braces for Scoliosis- Types, Uses and Results

Braces for scoliosis are recommended to prevent the scoliotic curve …

discogenic back pain

Discogenic Back Pain Causes, Diagnosis and Treatment

Discogenic back pain is a common cause of axial low back pain [the …

Elbow arthrodesis using internal fixation

Elbow Arthrodesis- Indications, Methods and Complications

Elbow arthrodesis refers to the surgical fusion of the elbow joint. It …

Popular articles

Iselin Disease or Osteochondrosis of Base of Fifth Metatarsal

Iselin disease is osteochondrosis or …

olecranon fractures - Lateral view of the elbow showing olecranon fractures

Olecranon Fracture Persentation and Treatment

Olecranon fracture of olecranon process …

Relations of lower lumbosacral plexus or sacral plexus

Diabetic Lumbosacral Plexopathy

Diabetic Lumbosacral Plexopathy is a …

Methylene blue injection in elbow

Intrarticular Methylene Blue Injection Procedure

Methylene blue injection is an easy and …

Bone and Spine

© 2025 BoneAndSpine.com · All Rights Reserved
The content provided on BoneAndSpine.com is intended for informational and educational purposes only. It is not a substitute for professional medical advice, diagnosis, or treatment. Read Disclaimer in detail.